Chapter 8: Probability Density Estimation
ثبت نشده
چکیده
We discussed several techniques for graphical exploratory data analysis in Chapter 5. One purpose of these exploratory techniques is to obtain information and insights about the distribution of the underlying population. For instance, we would like to know if the distribution is multi-modal, skewed, symmetric, etc. Another way to gain understanding about the distribution of the data is to estimate the probability density function from the random sample, possibly using a nonparametric probability density estimation technique. Estimating probability density functions is required in many areas of computational statistics. One of these is in the modeling and simulation of physical phenomena. We often have measurements from our process, and we would like to use those measurements to determine the probability distribution so we can generate random variables for a Monte Carlo simulation (Chapter 6). Another application where probability density estimation is used is in statistical pattern recognition (Chapter 9). In supervised learning, which is one approach to pattern recognition, we have measurements where each one is labeled with a class membership tag. We could use the measurements for each class to estimate the class-conditional probability density functions, which are then used in a Bayesian classifier. In other applications, we might need to determine the probability that a random variable will fall within some interval, so we would need to evaluate the cumulative distribution function. If we have an estimate of the probability density function, then we can easily estimate the required probability by integrating under the estimated curve. Finally, in Chapter 10, we show how to use density estimation techniques for nonparametric regression. In this chapter, we cover semi-parametric and nonparametric techniques for probability density estimation. By these, we mean techniques where we make few or no assumptions about what functional form the probability density takes. This is in contrast to a parametric method, where the density is estimated by assuming a distribution and then estimating the parameters.
منابع مشابه
تخمین احتمال بزرگی زمینلغزشهای رخداده در حوزه آبخیز پیوهژن (استان خراسان رضوی)
Knowing the number, area, and frequency of landslides occurred in each area has a prominent role in the long-term evolution of area dominated by landslides and can be used for analyzing of susceptibility, hazard, and risk. In this regard, the current research is trying to consider identified landslides size probability in the Pivejan Watershed, Razavi Khorasan Province. In the first step, lands...
متن کاملWavelet Based Estimation of the Derivatives of a Density for m-Dependent Random Variables
Here, we propose a method of estimation of the derivatives of probability density based wavelets methods for a sequence of m−dependent random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for the such estimators.
متن کاملWavelet Based Estimation of the Derivatives of a Density for a Discrete-Time Stochastic Process: Lp-Losses
We propose a method of estimation of the derivatives of probability density based on wavelets methods for a sequence of random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for such estimators. We suppose that the process is strongly mixing and we show that the rate of convergence essentially depends on the behavior of a special quad...
متن کاملModel, Identification & Analysis of Complex Stochastic Systems: Applications in Stochastic Partial Differential Equations and Multiscale Mechanics
xi 1 Chapter 1: Introduction 1 1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Chapter 2: Asymptotic Distribution for Polynomial Chaos Representation from Data 5 2.1 Motivation and Problem Description . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملChapter 4 : Generating Random Variables
Many of the methods in computational statistics require the ability to generate random variables from known probability distributions. This is at the heart of Monte Carlo simulation for statistical inference (Chapter 6), bootstrap and resampling methods (Chapters 6 and 7), Markov chain Monte Carlo techniques (Chapter 11), and the analysis of spatial point processes (Chapter 12). In addition, we...
متن کامل